
Fish and Fisheries. 2018;19:769–781.	 		 	 | 	769wileyonlinelibrary.com/journal/faf

 

Received:	26	September	2017  |  Accepted:	5	February	2018
DOI: 10.1111/faf.12287

O R I G I N A L  A R T I C L E

Ecosystem- based forecasts of recruitment in two menhaden 
species

Ethan Deyle1  | Amy M Schueller2 | Hao Ye1,3  | Gerald M Pao4 | George Sugihara1

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided the original work is properly cited.
©	2018	The	Authors.	Fish and Fisheries	Published	by	John	Wiley	&	Sons	Ltd.

1Scripps Institution of 
Oceanography,	University	of	California	San	
Diego,	La	Jolla,	CA,	USA
2National	Oceanic	and	Atmospheric	
Administration,	Beaufort	
Laboratory,	Southeast	Fisheries	Science	
Center,	National	Marine	Fisheries	Service,	
Beaufort,	NC,	USA
3Wildlife Ecology and 
Conservation,	University	of	Florida,	
Gainesville,	FL,	USA
4Salk	Institute	for	Biological	Studies,	La	Jolla,	
CA,	USA

Correspondence
Ethan	Deyle,	Scripps	Institution	of	
Oceanography,	University	of	California	San	
Diego,	La	Jolla,	CA,	USA.
Email: edeyle@ucsd.edu

Funding information
Lenfest	Ocean	Program,	Grant/Award	
Number:	00028335;	Department	of	
Defense Strategic Environmental Research 
and	Development	Program,	Grant/
Award	Number:	15	RC-2509;	EPA-	STAR	
Fellowship	Program;	National	Science	
Foundation,	Grant/Award	Number:	DEB-
1020372;	National	Science	Foundation	
ABI-Innovation,	Grant/Award	Number:	
DBI-1667584;	Sugihara	Family	Trust,	the	
Deutsche	Bank-Jameson	Complexity	Studies	
Fund;	The	Leslie	and	John	McQuown	Gift	
and	the	McQuown	Chair	in	Natural	Sciences,	
University	of	California,	San	Diego

Abstract
Gulf (Brevoortia patronus,	 Clupeidae)	 and	 Atlantic	 menhaden	 (Brevoortia tyrannus,	
Clupeidae)	support	large	fisheries	that	have	shown	substantial	variability	over	several	
decades,	in	part,	due	to	dependence	on	annual	recruitment.	Nevertheless,	traditional	
stock–recruitment relationships lack predictive power for these stocks. Current man-
agement	 of	 Atlantic	menhaden	 explicitly	 treats	 recruitment	 as	 a	 random	process.	
However,	 traditional	 methods	 for	 understanding	 recruitment	 variability	 carry	 the	
very specific hypothesis that the effect of adult biomass on subsequent recruitment 
occurs independently of other ecosystem factors such as food availability and preda-
tion.	Here,	we	evaluate	the	predictability	of	menhaden	recruitment	using	a	model-	
free approach that is not restricted by these strong assumptions. We find that 
menhaden	recruitment	is	predictable,	but	only	when	allowing	for	interdependence	of	
stock	with	other	ecological	factors.	Moreover,	while	the	analysis	confirms	the	pres-
ence	of	environmental	effects,	the	environment	alone	does	not	readily	account	for	
the	complexity	of	menhaden	recruitment	dynamics.	The	findings	set	the	stage	for	
revisiting	recruitment	prediction	in	management	and	serve	as	an	instructive	example	
in the ongoing debate about how to best treat and understand recruitment variability 
across species and fisheries.
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1  | INTRODUC TION

Gulf	and	Atlantic	menhaden	have	both	supported	large	fisheries	over	
the	past	 several	decades.	US	 landings	of	menhaden	 from	2011	 to	
2015	total	7.7	billion	lbs.,	making	them	the	second	largest	US	fishery	
by	weight	only	to	Alaskan	pollock	(Gadus chalcogrammus,	Gadidae),	
and the average annual catch is valued at over $100 million (source: 
NOAA	Commercial	Fisheries	Statistics).	These	fisheries	also	experi-
ence a great deal of catch variability. This is unsurprising given that 
menhaden,	 like	most	 forage	 fish	 species,	 are	 strongly	 recruitment	
driven.	That	is,	the	youngest	adult	age	class	(new	recruits)	constitute	
most	of	the	commercial	catch,	and	so	variability	 in	recruitment	di-
rectly translates to variability in catch.

Here,	we	take	a	model-	free	approach	to	understanding	and	pre-
dicting	 the	 year-	to-	year	 changes	 in	menhaden	 recruitment,	 which	
remain a significant sticking point for management. Current practice 
for	 setting	 catch	 recommendations	 of	 Atlantic	menhaden	 use	 the	
median of historical recruitment—in essence treating recruitment as 
fundamentally	unpredictable.	 For	Gulf	menhaden,	 a	 stock–recruit-
ment	curve	is	specified	but	highly	uncertain.	Due	to	the	recruitment-	
driven	nature	of	 these	 fisheries,	 the	 inability	 to	accurately	predict	
recruitment is a substantial limitation for management and risk 
evaluation.

Moreover,	 recent	 discussions	 of	 menhaden	 management	 have	
centred on the role that these species play in their ecosystems as 
both species occupying key middle trophic levels that support pi-
scivorous fish such as striped bass (Morone saxatilis,	Moronidae)	and	
red drum (Sciaenops ocellatus,	 Sciaenidae).	The	Atlantic	Menhaden	
Management	Board	has	expressed	 interest	 in	maintaining	a	forage	
base for piscivorous species while also maintaining commercial fish-
ing	 interests,	while	 the	Gulf	Menhaden	Fishery	Management	Plan	
goals include management based on ecosystem science (VanderKooy 
&	Smith,	2015).	While	considering	an	ecosystem-	based	perspective	
is	important	for	effective	management	of	menhaden,	it	is	also	a	tall	
order	given	key	uncertainties	for	each	species,	such	as	recruitment	
dynamics.

More	broadly,	recent	work	has	questioned	the	ultimate	predict-
ability	 or	 randomness	 of	 recruitment	 (Schindler	 &	 Hilborn,	 2015;	
Szuwalski,	 Vert-	Pre,	 Punt,	 Branch,	 &	 Hilborn,	 2015).	 Menhaden	
present	a	useful	test	case	for	this	debate,	 in	that	there	are	empiri-
cal	measurements	of	 recruitment	 for	both	 species.	Thus,	 the	 rela-
tionship between stock and recruitment can be studied in a much 
cleaner way than other cases where recruitment measures are ulti-
mately	derived	from	observations	of	the	stock,	for	example	through	
stock	 assessments	 (Brooks	&	Deroba,	 2015;	 Storch,	 Glaser,	 Ye,	 &	
Rosenberg,	2017).

Yet,	while	 these	 exceptional	 data	 exist	 for	menhaden,	 the	 dy-
namics are still treated as largely random. This current under-
standing hinges on the lack of success of the traditional parametric 
modelling	 approaches.	 The	 models,	 for	 example	 the	 Ricker	 and	
Beverton–Holt	stock–recruitment	curves	treat	recruitment	as	a	uni-
variate function of the stock size. While poor fits of fisheries data 
to	 these	 stock–recruitment	 curves	 are	 far	 from	 unusual	 (Subbey,	

Devine,	Schaarschmidt,	&	Nash,	2014),	the	stock–recruitment	curve	
model	 fits	 for	menhaden	 are	 exceptionally	 poor	 and	 are	 not	 used	
in	projections	for	management	(Quinn	&	Deriso,	1999).	This	lack	of	
explanatory	power	 is	true	whether	deriving	recruitment	 in	a	tradi-
tional	stock	assessment	of	adult	data	(SEDAR,	2013,	2015)	or	for	the	
empirical	measures	of	recruitment	ala	Figure	1b,d.

Multiple	reasons	have	been	given	for	the	failure	to	fit	parametric	
models and the apparent randomness of the stock–recruitment re-
lationship.	Measurement	error	is	an	obvious	place	to	look.	For	men-
haden,	 there	 are	particular	problems	 stemming	 from	 the	 fact	 that	
observational programmes responsible for measuring menhaden ju-
veniles	are	largely	designed	around	other	species	(e.g.,	striped	bass).	
Strong dependence on stochastic environmental drivers is also a 
common	explanation,	with	studies	across	both	species	identifying	a	
wide array of processes that—at least at one time or another—affect 
recruitment,	 including	 longshore	wind	 patterns	 (Quinlan,	 Blanton,	
Miller,	&	Werner,	1999),	winter	storms	(Checkley,	Raman,	Maillet,	&	
Mason,	1988)	and	river	flow	(Govoni,	1997;	Sanchez-	Rubio	&	Perry,	
2015;	 Vaughan,	 Govoni,	 &	 Shertzer,	 2011).	 However,	 attempts	 to	
incorporate environmental information into recruitment forecasts 
via	the	traditional	“environmental	Ricker”	(Nelson,	Ingham,	&	Schaaf,	
1977)	have	not	met	with	much	success	(Myers,	1998).
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Less	well	 acknowledged	 in	 fisheries	 circles	 is	 the	 potential	 for	
problems	 to	 lie	with	 the	basic	equation-	based	modelling	approach	
itself.	 Mechanistic	 models	 can	 be	 very	 appealing.	 For	 example,	
benchmarks	like	maximum	sustainable	yield	can	be	explicitly	derived	
from	the	model	structure.	However,	these	easy	inferences	are	only	
valid if the model structure is correct and properly parameterized. In 
fact,	fitting	model	parameters	to	population	time	series	can	be	sur-
prisingly	difficult	(Perretti,	Munch,	&	Sugihara,	2013).	More	funda-
mentally,	the	functional	forms	and	structure	of	a	parametric	model	
encapsulate	very	specific	hypotheses	about	dynamics,	and	studies	
typically take these on as tacit assumptions that are not critically 
evaluated	or	quantitatively	tested.	The	widely	used	Beverton–Holt	
and	Ricker	stock–recruitment	curves	capture	very	basic,	reasonable	
mechanisms,	but	also	carry	very	specific	assumptions	about	dynam-
ics—for	 example	 that	 the	 population	 experiences	 a	 static	 growth	
rate	 and	natural	mortality	 rate	 and	 exists	 as	 a	 single	 stock	 that	 is	
independent	of	 the	 rest	of	 the	ecosystem.	Yet,	 these	assumptions	
can be difficult to reconcile with current knowledge. Recent work on 
Atlantic	menhaden,	for	example,	shows	clear	evidence	that	growth	
rates	depend	on	the	population	density	(Schueller	&	Williams,	2017).

Consequently,	 while	 these	 assumptions	make	 for	manageable	
and	expedient	models,	the	reality	that	populations	are	embedded	in	

complex	ecosystems	can	greatly	limit	their	insight.	In	this	paper,	we	
take	 an	 alternative	 approach,	 empirical	 dynamic	modelling	 (EDM)	
(Ye,	Beamish,	et	al.,	2015),	to	re-	examine	the	notion	that	menhaden	
recruitment variability is random and attempt to develop predic-
tive	 models	 by	 treating	 recruitment	 as	 an	 ecosystem-	dependent	
process.	 The	 key	 to	 EDM	 is	 to	 view	 time-	series	 data	 as	 evolving	
through time.

As	an	illustration,	Figure	2	shows	simulated	data	of	a	fish	popula-
tion.	In	panel	(a),	a	scatterplot	of	stock	vs.	recruitment	(with	the	ap-
propriate	reproductive	delay)	does	not	show	any	clear	relationship;	
a single curve fit through the data would leave much of the variance 
unexplained.	However,	this	assumes	that	the	effect	of	stock	on	re-
cruitment	is	static	and	can	be	treated	as	independent	of	context.	If	
we	take	the	same	data	and	“connect	the	dots”	(Figure	2b)	by	drawing	
lines	through	consecutive	points	in	time,	it	is	evident	that	the	state	
of recruitment and stock follows similar trajectories many different 
times	 through	 the	 observation	 period.	 That	 is,	 by	 considering	 the	
temporal	 nature	 of	 these	 data	 instead	 of	 treating	 them	 as	 static,	
there	is	evidence	of	deterministic	processes	at	work.	However,	this	
still	treats	stock	as	the	only	factor	explaining	recruitment.

What happens if we consider other factors? This might seem 
hard	to	do,	as	we	have	only	been	given	stock	and	recruitment	data.	

F IGURE  1 Normalized	time-	series	observations	for	Atlantic	(top)	and	Gulf	(bottom)	menhaden	species.	Time	series	(a,	c)	are	shown	for	
Juvenile	Abundance	Indices	(JAI—a	proxy	for	recruitment)	and	Landing	per	Unit	Effort	(LPUE—an	indicator	of	adult	spawning	biomass).	
Traditional	single-	species	management	treats	recruitment	as	a	univariate	function	of	stock	size.	However,	plotting	the	data	together	shows	
(b,	d)	statistical	fits	are	extremely	poor,	giving	very	little	evidence	for	a	univariate	relationship
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The	time-	delay	embedding	theorem	of	Takens	(1981)	offers	a	solu-
tion: using time lags of measured variables in place of unmeasured 
variables.	 In	 other	words,	 instead	 of	 considering	 recruitment	 as	 a	
function	of	 stock	 size,	we	can	model	 recruitment	 as	 a	 function	of	
current	stock	size	and	stock	size	at	a	1-	year	lag	(Figure	2c).	Doing	so	
“untangles” the trajectories and allows recruitment to be uniquely 
defined	 and	modelled	 from	 the	 time	 series	 of	 stock	 size,	 even	 in	
the	case	at	hand	where	the	data	actually	arise	from	a	continuous-	
time Ricker model with a third species that preys on the juveniles 
(Supporting	Information).

This set of untangled trajectories constitutes the dynamic attrac-
tor,	which	can	be	studied	in	its	own	right	to	understand	and	predict	
system dynamics in much the same way as model equations. This is 
the	crux	of	EDM.	While	detailed	description	of	the	methods	is	pro-
vided	later	in	the	Methods	section,	the	essential	approach	(Figure	3)	
is	to	use	historical	trajectories	(blue)	most	analogous	to	the	current	
state	(magenta)	to	predict	future	dynamics	(red).	Note	that	this	only	
works because the multidimensional dynamics have been properly 
unfolded.	If	we	tried	to	do	this	in	the	2D	representation	in	panel	B,	
for	example	akin	to	a	Loess	fit	(Cleveland	&	Devlin,	1988),	the	predic-
tion of the future values would be very poor because the different 
states of the system are poorly resolved. While we only needed to 
include	one	more	dimension	here	to	resolve	the	states,	the	approach	
is	not	limited	to	three	dimensions,	just	our	ability	to	neatly	visualize	
them in a manuscript plot.

In	this	way,	the	EDM	approach	can	reflect	multivariate	state	de-
pendence (unlike an autoregressive or multivariate autoregressive 
model),	while	being	entirely	equation	free.	Moreover,	the	ability	to	
use	time	lag	variables	in	place	of	explicit	measurements	of	interacting	
variables	makes	the	approach	eminently	practical,	because	ecosys-
tem dynamics can be allowed and accommodated for even when the 
other	variables	are	not	identified,	measured	or	exactly	understood	
mechanistically. Variations on this simple nearest neighbour fore-
casting have been used to test for the presence of multidimensional 
(Sugihara	&	May,	1990)	and	nonlinear	(Sugihara,	1994)	dynamics,	but	
also	 to	 probe	mechanistic	 relationships	 between	 variables	 (Deyle,	
May,	Munch,	&	 Sugihara,	 2016;	 Sugihara	 et	al.,	 2012),	 understand	
the	role	of	stochastic	drivers	(Dixon,	Milicich,	&	Sugihara,	1999),	and	
make	true	out-	of-	sample	forecasts	(McGowan	et	al.,	2017).

Our immediate goal is to develop predictive models for men-
haden	recruitment.	In	so	doing,	we	pose	the	following	hypothesis:	
that the apparent unpredictability of menhaden recruitment is a 
consequence of ecosystem effects on menhaden dynamics. We 
test if ecosystem factors had a key impact on menhaden and if 
an ecosystem perspective can lead to recruitment predictability 
not	possible	 in	 the	single-	species	 framework.	We	further	explic-
itly look at basic environmental drivers to see if they can account 
for the ecosystem effects or if there is evidence of unmeasured 
biotic factors like prey availability or predation that are key to the 
recruitment dynamics.

F IGURE  2 Model	illustration	of	stock–recruitment	relationships	with	multivariate	dynamics.	Stock–recruitment	relationships	can	appear	
very	messy	when	important	ecosystem	dynamics	are	ignored.	In	this	model	example,	the	stock–recruitment	relationship	looks	extremely	
noisy	(or	non-	existent)	if	one	tries	to	understand	recruitment	as	a	univariate	function	of	stock	(a),	independent	of	time	and	ecosystem.	
Population	data	are	fundamentally	dynamic;	however,	they	occur	as	a	sequence.	(b)	Connecting	the	dots	shows	that	the	behaviour	is	not	
totally	random,	but	there	is	reoccurring	behaviour.	If	the	trajectories	are	expanded	into	threedimensions	using	a	time-	lagged	coordinate	
of	Stock	(c),	the	pattern	is	fully	resolved	as	a	dynamic	attractor.	What	appeared	to	be	a	scatter	of	random	noise	in	(a)	can	be	resolved	as	a	
completely deterministic flow of trajectories
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2  | METHODS

2.1 | Atlantic menhaden

A	juvenile	abundance	index	(JAI;	young	of	year	or	age-	0	recruitment)	
was	 compiled	 for	 Atlantic	 menhaden	 during	 1959–2013	 (SEDAR,	
2015).	The	index	is	composed	of	16	fishery-	independent	data	sets	
from Georgia to Rhode Island. Each data set was standardized using 
the	 criterion	 outlined	 for	 the	 stock	 assessment	 (SEDAR,	 2015).	
Individual	 indices	were	combined	into	a	coast-	wide	 index	using	hi-
erarchical	modelling	(Conn,	2010).	Indices	were	able	to	be	combined	
because	they	had	similar	age-	0	selectivity.

Landings	 per	 unit	 effort	 (LPUE)	 was	 the	 total	 commercial	 re-
duction	 landings	by	year	divided	by	 the	vessel-	weeks	per	year	 for	
the	fleet	(SEDAR,	2015).	Reduction	landings	were	reported	as	daily	
vessel unloads by the companies and were converted into kilo-
grams	(SEDAR,	2015).	Effort	was	vessel-	weeks,	which	was	defined	
as	a	vessel	fishing	at	a	minimum	1	day	of	a	week	(Nicholson,	1971;	
SEDAR,	2015).

2.2 | Gulf menhaden

A	 JAI	 (young	of	 year	or	 age-	0	 recruitment)	was	 compiled	 for	Gulf	
menhaden	during	1996–2015	(Schueller,	2016).	The	index	was	com-
posed	 of	 three	 fishery-	independent	 data	 sets	 from	 Louisiana	 to	
Alabama	for	the	months	of	December–September.	Each	data	set	was	
standardized using the criterion outlined for the stock assessment 
(SEDAR,	2013).	Individual	indices	were	combined	into	a	coast-	wide	
index	using	hierarchical	modelling	(Conn,	2010).	Indices	were	able	to	
be	combined	because	they	had	similar	age-	0	selectivity.

An	additional	Gulf	menhaden	 JAI	 index	was	 considered	 in	 this	
analysis.	The	additional	 index	 included	data	 from	Texas,	as	well	as	
the	data	from	the	original	index	considered	during	the	stock	assess-
ment.	Texas	data	were	not	included	in	the	stock	assessment	due	to	
concerns	 related	 to	 correct	 species	 identification	 (SEDAR,	 2013).	
The	Texas	data	were	included	here	to	determine	if	the	recruitment	
dynamics were different with the addition of spatial and temporal 
coverage.	However,	data	up	to	1978	were	constituted	from	very	few	
survey	 stations	and	hence	were	excluded	before	any	analysis	was	
done.

Landings	per	unit	efforts	were	the	total	landings	by	year	divided	
by	 the	 vessel-	ton-	weeks	 (VTW)	 per	 year	 for	 the	 Gulf	 menhaden	
fishery	fleet.	A	VTW	was	net	tonnage	of	a	given	vessel	fishing	at	a	
minimum	1	day	in	a	given	week	(SEDAR,	2013).	The	total	effort	for	
a year was the sum of VTW across vessels and weeks in a fishing 
season. The unit of VTW was correlated with numbers of trips and 
number	 of	 sets	 over	 time;	 thus,	 all	 three	metrics	measured	 effort	
similarly	over	time	(SEDAR,	2013).	VTWs	were	used	as	that	effort	
metric provided the longest time series.

For	 this	 study,	 LPUE	 was	 treated	 as	 an	 index	 of	 adult	 abun-
dance	over	time.	Historically,	LPUE	has	been	used	as	an	indicator	of	
adult	 abundance	over	 time	 in	 stock	 assessment	models.	However,	
LPUE	has	not	always	been	a	reliable	 indicator	of	stock	size	due	to	

hyperstability	in	some	fishing	fleets.	Specifically,	as	abundance	be-
comes	very	 low,	 the	 fishery	 is	able	 to	continue	harvesting	 regard-
less,	or	as	abundance	increases	and	is	high,	the	fishery	can	become	
saturated	 and	 can	 only	 harvest	 a	 limited	 amount	 of	 fish.	 For	 the	
menhaden	fishery,	hyperstability	can	be	a	concern	both	at	low	and	
high abundances. The menhaden fishery uses spotter pilots to lo-
cate	schools	of	fish;	thus,	when	abundances	are	low,	the	pilots	are	
still able to locate schools with some efficiency. When abundance 
is	high,	the	menhaden	fleet	has	a	limited	number	of	vessels	fishing	
with	a	limited	hold	capacity,	and	the	reduction	facilities	processing	
the	catch	have	a	maximum	processing	capacity.	Regardless,	LPUE	for	
the menhaden species appears to capture the dynamics of the adult 
populations	 adequately.	 LPUEs	 track	 age	 classes	 or	 cohorts	 over	
time through the fishery. Correlations between landings and adult 
indices used in the respective stock assessments lend support that 
LPUE	is	an	indicator	of	adult	abundance.	Finally,	the	current	analysis	
supports	the	conclusion	that	LPUE	indicates	adult	abundance.

2.3 | Environmental variables

Sea surface temperature and sea level pressure data are derived 
from	EERST	 v3b	 (Smith,	 Reynolds,	 Peterson,	&	 Lawrimore,	 2008),	

F IGURE  3  Illustration	of	basic	EDM	with	model	data.	For	
this	model,	the	attractor	can	be	completely	unfolded	in	three	
dimensions	by	taking	stock,	S(t),	recruitment,	R(t)	and	a	1	year	lag	
of	stock,	S(t	−	1),	as	the	three	axes.	When	the	dynamic	attractor	
is	fully	unfolded	in	this	way,	the	dynamics	can	be	predicted	and	
studied	with	very	simple	nonparametric	methods,	such	as	nearest	
neighbour	forecasts.	Here,	the	dynamics	at	the	target	point	
(magenta	point)	can	be	understood	by	looking	at	the	behaviour	
of	analogous	historical	states,	that	is	points	on	the	attractor	that	
are	nearest	in	the	three-	dimensional	state	space	and	thus	most	
similar	(the	blue	points).	Good	predictions	can	be	made	by	a	simple	
weighted average the evolution of these nearest neighbours (the 
red	points)
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retrieved	14	February	2015.	While	these	data	are	given	on	a	2°	×	2°	
grid,	 we	 compute	 a	 single	 summary	 index	 by	 performing	 a	 PCA	
analysis on the annual averages of each grid over a regional bound-
ing	box	(for	the	grid	centre	points)	and	taking	the	first	EOF.	For	the	
Atlantic,	 the	bounding	box	 is	 {66°W,	82°W}	 {24°N,	44°N};	 for	 the	
Gulf	of	Mexico,	it	is	{80°W,	96°W}	{20°N,	30°N}.	In	both	cases,	the	
first	 EOF	captures	 a	 great	deal	 of	 the	 variability	 at	 individual	 grid	
sites over the population ranges.

River	discharge	data	are	derived	from	USGS	NWIS,	retrieved	3	
March	2015.	These	data	are	provided	for	individual	geo-	located	sta-
tions.	For	 the	Gulf,	we	use	stations	with	coverage	 from	1	January	
1964	 to	 31	 December	 2014	 that	 are	 located	 in	 Texas,	 Louisiana,	
Mississippi,	Alabama,	Georgia	or	Florida	and	are	within	60	nautical	
miles	of	shoreline.	For	the	Atlantic,	we	use	stations	with	coverage	
from	1	January	1950	to	31	December	2013	that	are	located	in	North	
Carolina,	Virginia,	Maryland,	Delaware,	Pennsylvania,	New	 Jersey,	
New	York,	Connecticut	or	Rhode	Island	and	are	within	60	nautical	
miles	of	shoreline.	As	with	the	gridded	SLP	and	SST	measures,	we	
compute	a	single	summary	index	with	a	PCA	analysis.	However,	the	
individual stations are first averaged annually and the stations are 
weighted	in	the	PCA	by	their	 local	density	 (as	the	stations	are	not	
uniformly	distributed).

As	 above,	 the	 first	 EOF	of	 the	 river	 discharge	data	 captures	 a	
great deal of the variability in individual stations.

2.4 | EDM theory

Figure	2	in	the	introduction	illustrated	the	basis	of	EDM:	reimagin-
ing	time-	series	data	as	a	sequence	of	points	(trajectory)	in	a	multidi-
mensional Cartesian space that then traces out the evolution of the 
system	over	time,	that	is	the	dynamic	attractor.	All	EDM	analysis	in	
this paper started with that premise.

Formally,	 the	 attractor	 was	 reconstructed	 by	 defining	 a	 state	
space	as	a	set	of	time-	series	variables	and	their	 lags,	and	thus,	 re-
interpreting	 the	 time	 series	 as	 a	 sequence	of	 points	 in	 this	 space,	
x(t1)	=	<x1(t1),	x2(t1),	x3(t1),	…	>,	x(t2)	=	<x1(t2),	x2(t2),	x3(t2),	…	>,	etc.	If	
many	 system	variables	 are	observed,	 it	may	be	possible	 to	 simply	
use	each	observation	variable	as	one	of	the	state-	space	coordinates.	
However,	even	if	only	a	single	variable	is	observed,	an	attractor	can	
still be reconstructed using time lags of the observed variable as 
proxies	for	the	other	system	variables	(Takens,	1981).	If	some	vari-
ables	were	observed	and	some	were	not,	a	mixture	of	unlagged	and	
lagged	variables	is	also	admissible	(Deyle	&	Sugihara,	2011).

The number of coordinate variables used is called the embed-
ding	dimension,	denoted	E.	 If	 too	 few	coordinates	are	used,	 there	
will not be enough information to resolve distinct ecosystem states. 
This	is	exhibited	by	the	simulated	data	in	Figure	2b,	where	the	state	
space	is	just	two	dimensions.	The	trajectories	are	tangled,	because	
there	 is	a	 third	variable	 to	account	 for,	predators.	 If	predators	are	
abundant,	the	dynamics	can	be	very	different	than	if	predators	are	

scarce.	 Thus,	 the	point	 (stock,	 recruitment)	 could	 correspond	 to	 a	
time	when	the	population	is	growing	or	contracting,	depending	on	
the third variable. Once a third dimension is included (either the 
predator	abundance	explicitly	or	a	lag	of	stock),	the	trajectories	are	
cleanly	 resolved.	 Of	 course,	 real	 systems	 may	 require	 more	 than	
three	dimensions,	so	the	embedding	dimension	must	be	determined	
in	the	analysis	(essentially	fit	like	a	parameter).

When	envisaged	as	an	attractor	in	state	space,	the	dynamics	of	
the system boil down to the multivariate function that maps one 
time	point	to	the	next:

Again,	the	vector	x(t)	is	the	encapsulation	of	the	data	in	a	partic-
ular	state	space.	It	could	be	an	explicit	embedding	of	the	data	where	
each	coordinate	is	a	different	time-	series	variable—x(t)	=	<x1(t),	x2(t),	
x3(t)	…	xE(t)>;	 it	 could	be	a	univariate	embedding	of	 the	data	using	
time lags as the different coordinates—x(t)	=	<x1(t),	x1(t −	1),	x1(t − 2),	
…,	x1(t −	(E −	1))>;	or	it	could	be	a	mixed	embedding	that	uses	a	few	
different variables and lags to fill in the rest—x(t)	=	<x1(t),	x2(t),	x3(t),	
x3(t-	1)	…,	x3(t −	(E −	3))>.

Now	 in	 traditional	modelling	approaches,	 the	 function	F	 is	de-
scribed	by	the	parametric	model	equations.	However,	the	function	F 
can	also	be	treated	empirically	from	the	data	using	simple,	nonpara-
metric approaches.

Simplex	projection	 is	a	very	simple	way	to	approximate	the	at-
tractor dynamics. It boils down to the simple principle that similar 
system	states	will	evolve	similarly	in	time.	Formally,	the	similarity	of	
two time points is judged by the Euclidian distance between them in 
the	reconstructed	state	space,	that	is	||x,x′||	=	((x1	−	x′1)

2 + (x2	−	x′2)
2 

+	…	+	(xE	−	x′E)
2)1/2.

The	 simplex	 projection	 prediction	 for	 a	 state	 x(t*),	 then,	 is	 a	
weighted average of the E + 1 historical time points that have the 
shortest Euclidian distance to x(t),	that	is:

Note	that	the	only	parameter	for	simplex	projection	is	the	em-
bedding dimension.

Another	simple	approach	to	modelling	the	attractor	dynamics	is	
to	use	 the	 fact	 that	any	 smooth	 function	can	be	approximated	by	
a local	 linear	function	over	a	small	enough	neighbourhood.	S-	maps	
accomplish this by performing a weighted linear regression where 
historical	points	on	the	attractor	are	given	an	exponentially	decaying	
weight	based	on	their	distance	from	the	target.	Explicitly,	local	linear	
model	is	the	matrix	C	that	solves,

where
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Here,	d̄ is the average distance between points on the attractor. 
The strength of the local weighting is controlled by the parameter θ. 
Note that if θ	=	0,	the	regression	becomes	just	a	global	 linear	map,	
that	is	S-	map	with	θ	=	0	is	just	a	standard	VAR	model	over	the	em-
bedding coordinates.

Note	too	that	the	S-	map	weighting	is	based	on	proximity	in	the	
multidimensional	 state	 space,	 not	 proximity	 in	 time.	 This	 is	 a	 key	
difference	 between	 it	 and	MARSS	 or	DLM	methods.	 The	weight-
ing	of	S-	maps	addresses	the	fact	that	the	system	dynamics	change	
on	the	manifold	due	to	the	inherent	underlying	nonlinearity/state-	
dependence.	MARSS	and	DLM	instead	treat	changes	to	the	dynam-
ics	as	random	drift	processes	in	time.	Thus,	they	are	a	rather	indirect	
way	 to	 deal	 with	 multivariate	 state-	dependence	 at	 best,	 but	 can	
also	give	very	wrong	answers	in	the	presence	of	state-	dependence	
(Deyle	et	al.,	2016).

Applying	simplex	projection	and	S-	map	to	a	time	series	can	be	
an	immediate	way	to	address	prediction,	for	example	of	population	
data.	However,	the	ability	to	make	forecasts	from	data	can	also	be	
a	means	to	an	end,	for	example	detecting	causal	influence	(Sugihara	
et	al.,	2012).

2.5 | EDM analysis: univariate

Basic	univariate	analysis	consists	of	sequential	application	of	sim-
plex	and	S-	maps.	First,	simplex	forecast	skill	over	the	historic	time	
series is measured as a function of the embedding dimension E,	
that is the number of lag coordinates used to unfold the dynamic 
attractor	(Sugihara	&	May,	1990).	Forecasts	are	made	using	leave-	
one-	out	cross-	validation,	that	is	the	target	time	point	is	not	used	in	
the attractor reconstruction. The forecast skill is measured using 
mean	absolute	error	(MAE)	and	the	Pearson’s	correlation	between	
observed and predicted values (ρ).	 Pearson’s	 correlation	 is	more	
sensitive	to	performance	at	the	extremes	of	the	time	series,	which	
can be a boon for measuring nonlinear processes but also makes 
it	 less	robust	to	observation	error	than	MAE.	For	the	LPUE	time	
series,	 the	 predictive	 skill	 is	 measured	 on	 the	 first	 differences	
in	 LPUE	 from	 t to t + 1,	 that	 is	ΔLPUE(t)	=	LPUE(t	+	1)	−	LPUE(t).	 
This	 makes	 it	 easier	 to	 distinguish	 meaningful	 attractor-	based	
prediction from the trivial statistical prediction one gets from the 
autocorrelation.

Analysis	then	proceeds	to	S-	maps.	The	embedding	dimension	is	
fixed	based	on	the	simplex	results,	and	the	nonlinear	S-	map	param-
eter θ	is	varied	from	0	to	5.	As	with	simplex	projection,	forecast	skill	
is measured either using ρ	or	MAE.	The	improvement	in	forecast	skill	
for θ	>	0	over	the	linear	S-	map	with	θ	=	0	is	also	of	particular	interest,	
that is Δρ	=	ρ	−	ρ(θ =	0).

Parametric	 statistics	 for	 the	statistical	 significance	of	EDM	re-
sults	 cannot	 be	 readily	 derived.	 Instead,	 statistical	 significance	
of	 EDM	 results	 can	 be	 established	 using	 appropriately	 designed	
surrogate	 tests.	 Here,	 we	 employ	 phase-	randomized	 surrogates	
(Ebisuzaki,	 1997)	 that	 preserve	 the	 basic	 statistical	 properties	 of	
the	time	series	(e.g.,	autocorrelation),	but	otherwise	randomizes	the	
time	 series.	 The	 same	 analysis	 performed	 for	 the	 real-	time	 series	

are	performed	on	500	 realizations	of	 the	 surrogate	 time	 series	 to	
generate	null	distributions	 for	 the	S-	map	predictability	 (ρ)	 and	 the	
nonlinear forecast improvement (Δρ).

2.6 | EDM analysis: convergent cross- mapping

In	 the	case	of	convergent	cross-	mapping	 (CCM),	attractor	predict-
ability	 can	 be	 a	way	 to	measure	 interactions	 between	 time-	series	
variables. If x and y	 belong	 to	 the	 same	 system,	 then	 the	 system	
states can be recovered with univariate embeddings of either x or y,	
and the attractor reconstructed from x can be used to predict values 
of y.	Using	simplex	projection,	this	boils	down	to:

1. Finding	 the	 historical	 states	 closest	 to	 the	 target	 time	 t* on 
the x	 manifold,	 that	 is	 the	 time	 points	 t1,	 t2,	 …	 t (E +	1) so that 
x(t1)	 has	 the	 smallest	 distance	 of	 historical	 states	 to	 x(t*),	 x(t2)	
the	 next	 smallest,	 etc.

2. Predicting y(t*)	based	on	a	weighted	average	of	 the	observed	y 
values	at	these	historical	analogues,	that	is

Note that the prediction time tp	is	included.	For	normal	applica-
tion	of	CCM,	this	is	set	at	tp =	0.	However,	for	stochastic	drivers	that	
act	with	 time	 delays,	 the	 driven	 variable	 x will only contain infor-
mation about past values of the drivers y,	and	so	CCM	may	only	be	
measurable	at	negative	time	lag,	tp	<	0	(Ye,	Beamish,	et	al.,	2015;	Ye,	
Deyle,	Gilarranz,	&	Sugihara,	2015).

Note	 too	 that	 as	 with	 simplex	 projection	 for	 basic	 univariate	
forecasting,	CCM	has	a	parameter,	E,	 the	embedding	dimension	of	
the	predictor	manifold.	For	CCM	with	prediction	lag	tp,	E is selected 
that	maximizes	CCM	prediction	at	lag	tp	−	1.	This	reduces	the	chance	
of	false	positives	(Deyle	et	al.,	2016).

If y can be predicted from states of x, this means that information 
about y has been encoded in variable x,	and	therefore	that	y had a 
causal influence on x. This is general to systems with identifiable de-
terministic	dynamics	(e.g.,	demonstrated	with	univariate	EDM	analy-
sis)	and	robust	to	realistic	amounts	of	observational	noise	(Sugihara	
et	al.,	2012).	The	generality	of	EDM	makes	CCM	convergent	cross-	
mapping a test for causation that does not rely on any assumptions 
about	 separability	 of	 different	 variables	 (i.e.,	 cross-	correlation	 or	
GAMs)	or	functional	form	(sequential	f-	testing	e.g.,	to	detect	envi-
ronmental	effects).

2.7 | EDM analysis: predicting recruitment 
from stock

Predicting recruitment from stock is possible with only a small ad-
justment	to	CCM	in	the	prediction	time.	That	is,	instead	of	predicting	
contemporaneous or lag values (tp	<	0)	of	the	JAI	from	lags	of	LPUE,	
we	predict	future	JAI	(tp	=	1	year).	Again,	these	forecasts	have	a	sin-
gle	parameter,	E.	As	with	univariate	simplex	projection,	this	is	fit	by	

y (t+ tp)= F (x (t))≈

E+1∑

i=1

y
(
ti+ tp

)
.
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maximizing	 the	 forecast	 skill,	ρ.	However,	 the	 prediction	 skill	 as	 a	
function of E is also of interest in addressing the question of whether 
the	effect	of	recruitment	must	be	treated	in	an	ecosystem	context	or	
not	(i.e.,	cannot	be	treated	as	a	univariate	function	of	stock).

2.8 | EDM analysis: including climate drivers in 
predictions

The	 final	 analysis	 is	 akin	 to	 that	 above,	 but	 instead	 of	 predic-
tion	 JAI(t + 1)	 from	<LPUE(t),	 LPUE(t	−	1),	…,	 LPUE(t	−	(E	−	1))>,	 the	
embedding	 also	 includes	 a	 lag	 of	 environment.	 That	 is,	 JAI(t + 1)	
is	 predicted	 from	 <Env(t),	 LPUE(t),	 LPUE(t),	 …,	 LPUE(t	−	(E	−	2))>.	
Additionally,	the	lags	of	LPUE	and	Env	are	normalized	to	have	stand-
ard deviation of 0 so that the distance calculations are not affected 
by the units of scaling of the variables.

3  | RESULTS

3.1 | Question 1: Do recruitment/year- to- year 
abundance changes have predictable dynamics?

We	begin	by	testing	for	predictable	dynamics	in	the	JAI	and	LPUE	time	
series	for	both	Atlantic	and	Gulf	menhaden	 (see	Methods).	The	first	
column	of	Figure	4a,d,g,j	shows	forecast	skill,	ρ,	as	a	function	of	the	
embedding	dimension	(number	of	lags	in	the	simplex	model)	for	each	of	
the	four	biological	time	series.	For	each	time	series,	we	select	the	em-
bedding	dimension,	E,	that	maximizes	the	simplex	ρ for all subsequent 
analyses	 (Glaser	 et	al.,	 2014;	 Sugihara	&	May,	1990).	Nonlinearity	 is	
tested	by	using	S-	maps	and	measuring	ρ as a function of the nonlinear 
parameter θ.	The	second	column	of	Figure	4b,e,h,k	shows	S-	map	ρ as 
a function of θ,	and	the	third	column	(c,f,i,l)	shows	the	improvement	in	
ρ	over	the	linear	S-	map,	that	is	the	change	in	ρ compared to ρ at θ	=	0.

F IGURE  4 Univariate	EDM	analysis	
of	Atlantic	and	Gulf	menhaden.	The	left	
column	(a,d,g,j)	shows	forecast	skill	(ρ)	as	a	
function of embedding dimension (E)	using	
simplex	projection.	Atlantic	JAI,	Atlantic	
LPUE	and	Gulf	LPUE	all	show	signs	of	
low-	dimensional	attractor	dynamics.	The	
centre	(b,e,h,k)	column	shows	forecast	
skill (ρ)	as	a	function	of	the	nonlinear	
parameter θ	for	S-	map	analysis,	where	
θ	=	0	corresponds	to	a	global	linear	model	
(i.e.,	a	MAR)	and	larger	θ correspond 
to increasingly nonlinear models. The 
rightmost	column	(c,f,i,l)	shows	the	same	
analysis,	but	explicitly	looking	at	the	
improvement,	Δρ,	in	nonlinear	S-	map	
(θ	>	0)	forecast	skill	over	the	linear	S-	map	
(θ	=	0).	Grey	regions	show	the	0.05	and	
0.95	quantiles	of	the	null	distributions
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Atlantic	 JAI	 and	Gulf	 LPUE	 time	 series	 show	 clear	 statistically	
significant	predictability.	More	 importantly,	 forecast	skill	 increases	
with θ indicating the presence of deterministic nonlinear behaviour 
(p < .05),	and	that	any	environmental	effects	may	be	convolved	with	
stock–recruitment dynamics. The nonlinear signal is less strong for 
Atlantic	LPUE	(p < .2)	and	Gulf	JAI.	In	the	latter	case,	baseline	pre-
dictability	is	very	low,	indicating	that	the	time	series	itself	may	not	
be very predictable.

Overall,	year-	to-	year	changes	in	both	Gulf	and	Atlantic	menha-
den	abundance	show	predictable	nonlinear	dynamics.	However,	for	
the	Gulf,	 this	 is	only	recoverable	from	LPUE.	The	apparent	 lack	of	
signal	 in	 the	Gulf	 JAI	 time	 series	 could	 be	 due	 to	 (i)	 limited	 time-	
series	 length,	 (ii)	 too	 much	 uncertainty	 or	 incompleteness	 of	 the	
measurements	or	(iii)	strong	stochastic	forcing.

3.2 | Question 2: Is there evidence of interaction 
between stock and recruitment?

Next,	we	look	for	 interactions	between	stock	and	recruitment	by	
using	convergent	cross-	mapping	(CCM).	Essentially,	if	stock	and	re-
cruitment	are	dynamically	related	to	each	other,	there	should	be	a	

correspondence	 (mapping)	 between	 the	 attractors	 reconstructed	
from	 each	 that	 can	 be	 used	 predictively.	 Namely,	 if	 stock	 has	 a	
dynamic	 effect	 on	 recruitment,	 then	 the	 recruitment	 time	 series	
contains	the	signature	of	the	stock	dynamics,	and	so	 it	should	be	
possible	 to	 predict	 stock	 by	 cross-	mapping	 from	 recruitment.	 As	
expected,	CCM	 identifies	 clear	 and	 strong	 coupling	between	 the	
JAI	and	LPUE	time	series	of	each	species.	In	the	Atlantic	(Figure	5a),	
there is evidence of causation in both directions: stock affects re-
cruitment,	 recruitment	 affects	 stock.	 For	 the	 Gulf	 (Figure	5b,c),	
there	is	evidence	that	stock	affects	recruitment,	indicated	by	cross-	
mapping	from	JAI	to	LPUE.	LPUE,	however,	cannot	predict	JAI	at	0	
time	 lag.	Additionally,	 the	effect	of	stock	on	 recruitment	 is	much	
clearer	when	 Texas	 data	 are	 included	 (ρ(Lmax)	=	0.5x)	 rather	 than	
excluded	(ρ(Lmax)	=	0.2x).	That	is	to	say,	the	JAI	appears	to	contain	
much more information about the stock dynamics when it is con-
structed	with	 Texas	 data.	 This	 justifies	 focusing	 on	 the	 JAI	with	
Texas	in	the	remaining	analysis.

The	CCM	results	 for	Gulf	 JAI	 contravene	 the	 idea	 that	weak	
univariate	predictability	of	recruitment	is	due	to	observation	error,	
as the time series has clearly recoverable information about adult 
biomass.	The	CCM	results	are	more	consistent	with	low	univariate	

F IGURE  5 Measuring	effects	between	stock	and	recruitment	using	CCM.	Convergent	cross-	map	results	are	shown	between	empirical	
indicators	of	recruitment	(JAI)	and	stock	size	(LPUE).	In	the	Atlantic	(a),	stock	and	recruitment	show	strong	mutual	cross-	map	indicating	
that	despite	poor	parametric	stock-	recruitment	fits,	there	is	a	deterministic	effect	of	stock	on	recruitment	(and	vice	versa).	In	the	Gulf	(b,c),	
recruitment	can	cross-	map	stock,	which	again	indicates	there	is	a	deterministic	effect	of	stock	on	recruitment.	This	effect	is	substantially	
stronger	when	using	JAI	time	series	that	include	Texas	juvenile	survey	data	(b)	than	when	it	is	left	out	(c).	However,	stock	cannot	cross-	map	
recruitment.	This	is	better	understood	by	looking	at	cross-	map	(ρ)	skill	as	a	function	of	prediction	lag	(d,e).	Stock	does	cross-	map	of	past	
values	of	recruitment	in	the	Gulf,	suggesting	that	there	is	the	expected	effect	of	recruitment	on	stock,	but	that	recruitment	in	the	Gulf	has	
important	exogenous	drivers
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predictability being a symptom of strong stochastic forcing. In this 
case,	 it	would	be	difficult	to	predict	current	JAI	from	past	LPUE,	
as	the	LPUE	time	series	cannot	contain	current	information	about	
any	stochastic	driver.	However,	 it	would	still	contain	 information	
about	 past	 states	 of	 JAI,	 so	 lag	 prediction	 should	 be	 possible.	
Performing	 a	 lagged	 CCM	 analysis	 bears	 out	 this	 point	 exactly	
(Figure	5d,e).	While	LPUE	cannot	cross-	map	JAI	with	a	zero	pre-
diction	lag	in	the	Gulf	(Figure	5b),	LPUE	cross-	maps	past	values	of	
JAI	(from	1	to	3	years)	with	comparable	predictability	to	the	other	
direction	(Figure	5e).

3.3 | Question 3: Can recruitment be predicted 
from stock?

In	the	previous	analysis	(Figure	5),	recruitment	of	Atlantic	menhaden	
is	modelled	using	a	lag	coordinate	embedding	of	stock	size.	However,	
this	is	essentially	a	“nowcast,”	where	the	recruitment	in	year	t is es-
timated using stock size up to time t.	Figure	6a	shows	forecast	skill	
for	predicting	next	 year’s	 recruitment,	 the	 JAI	 at	 time	 (t + 1),	 using	
simplex	projection	and	varying	the	number	of	lags	of	LPUE.	For	both	
the	Atlantic	and	the	Gulf,	prediction	skill	(ρ	and	MAE)	increases	sub-
stantially	when	 including	multiple	 lags	of	LPUE.	This	 indicates	 that	
recruitment is not a function of stock size alone (per a traditional 
stock–recruitment	curve),	as	then	a	single	lag	of	LPUE	would	be	suf-
ficient	 for	 prediction.	 Optimum	 prediction	 requires	 multiple	 lags,	
suggesting that there are additional ecosystem factors that influence 
recruitment.	 Forecast	 skill	 is	 compared	 to	 the	 constant	 predictor	
(dashed	lines),	that	is	predicting	that	recruitment	next	year	will	be	the	
same as the recruitment in the current year. This is an important base-
line to establish for ecological forecasting to establish if the analysis 
is achieving meaningful prediction beyond just the serial autocorrela-
tion present in the time series. Note that although ρ for Gulf menha-
den	is	lower	than	that	for	the	constant	predictor,	MAE	is	better.

3.4 | Question 4: Are there synoptic climate drivers?

Given evidence that the effect of stock on recruitment cannot be 
understood	 without	 additional	 variables,	 a	 logical	 next	 step	 is	 to	
identify	 potential	 climatic	 drivers.	 As	 environmental	 effects	 may	
not	 show	up	 immediately	 in	 recruitment,	we	 allow	up	 to	 a	 5-	year	
lag	in	the	CCM	analysis	(Ye,	Deyle,	et	al.,	2015).	Figure	7	shows	the	
strength	of	cross-	mapping	to	regional	sea	surface	temperature	(SST,	
in	green),	sea	level	pressure	(SLP,	in	red)	and	river	discharge	(in	blue).	
For	the	Atlantic,	SST	shows	to	be	the	best	indicator	of	environmental	
effects	on	recruitment,	whereas	SLP	appears	to	be	the	best	indicator	
of effects on recruitment in the Gulf.

3.5 | Question 5: Do environmental drivers explain 
ecosystem effects?

Having	found	CCM	evidence	for	climatic	drivers,	it	makes	sense	to	
revisit	the	EDM	predictions	of	JAI	from	LPUE	and	explicitly	account	
for	climate	in	the	model.	In	the	Atlantic,	explicitly	including	SST	with	

lags	of	LPUE	actually	does	slightly	worse	(though	not	significantly	so)	
than	forecasts	based	on	just	LPUE	(Figure	8a).	Moreover,	the	same	
number	of	lags	of	LPUE	(5)	is	required	for	optimal	prediction.	Thus,	
while	SST	appears	 to	causally	affect	 the	population	dynamics,	 the	
LPUE	time	series	itself	already	contains	sufficient	information	about	
the	SST	effect.	This	means	it	is	unlikely	that	SST	has	a	strong,	direct	
stochastic	effect	on	recruitment	in	the	Atlantic.

The	picture	 is	different	 for	 the	Gulf	 (Figure	8b).	For	Gulf	men-
haden,	 including	 SLP	 (following	 Figure	7d)	 with	 LPUE	 gives	 sub-
stantially	better	forecast	skill	than	predicting	menhaden	from	LPUE	
alone.	However,	multiple	 lags	of	LPUE	are	still	 required	to	get	 the	
best	predictability	even	when	SLP	is	explicitly	included.	Thus,	while	
SLP	 shows	evidence	of	direct	 stochastic	effect	on	 recruitment	 (as	
lags	of	LPUE	are	not	sufficient	to	account	for	it),	there	appears	to	still	
be	additional,	unidentified	ecosystem	effects.

4  | DISCUSSION

The above analysis shows that menhaden recruitment is predictable. 
However,	in	contrast	to	the	standard	approach	of	identifying	a	sim-
ple	stock–recruit	relationship,	there	are	clear	signs	that	recruitment	
is	driven	nonlinearly	by	ecosystem	 interactions.	For	Atlantic	men-
haden,	 the	multivariate	modelling	 results	 indicate	 that	 ecosystem	
dynamics	can	be	described	using	lags	of	stock	size.	In	contrast,	for	
Gulf	menhaden,	including	sea	level	pressure	directly	into	the	models	
is	required	for	good	forecasting.	Although	we	caution	against	over-	
interpreting	 these	 results,	 they	 suggest	 differences	 between	 the	

F IGURE  6 Predicting	recruitment	from	stock	in	Atlantic	(left)	
and	Gulf	(right)	menhaden.	EDM	forecast	skill	(ρ)	and	error	(MAE)	
are shown as a function of the number of lags of stock being used 
to	predict	recruitment	(forecast	skill	in	red,	error	in	blue).	The	
Atlantic	shows	strong	evidence	of	predictability,	but	only	when	
multiple	lags	of	Stock	are	used,	that	is	when	the	dynamics	are	
treated	as	multivariate.	Prediction	is	weaker	in	the	Gulf,	but	also	
suggests	multivariate	dynamics.	For	comparison,	the	skill	and	error	
of	the	constant	predictor	(i.e.,	predict	that	JAI(t	+	1)	=	JAI(t))	are	
included	as	dashed	lines.	Note	that	MAE	direction	is	reversed	to	
correspond with the direction of ρ
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species	 in	 the	 strength	of	 the	environmental	 forcing,	 as	well	 as	 in	
how much of the relevant environmental effect is captured in the 
tested variables.

Indeed,	 the	 results	 pertaining	 to	 environmental	 drivers	 in	 the	
Atlantic	 might	 seem	 to	 run	 counter	 to	 other	 studies	 (Buchheister,	
Miller,	Houde,	Secor,	&	Latour,	2016).	While	our	analysis	shows	that	
SST	 influences	 Atlantic	 menhaden,	 it	 does	 not	 need	 to	 be	 directly	
accounted	 for	 to	achieve	accurate	predictions	of	 recruitment.	Note,	
however,	 that	we	analyse	 all	Atlantic	menhaden	as	 a	 single	popula-
tion,	in	contrast	to	Buchheister	et	al.,	who	looked	explicitly	at	spatial	
differences in recruitment. In combination with what is already known 
about	 Atlantic	 menhaden	 larval	 dispersal	 (Quinlan	 et	al.,	 1999),	 a	
reasonable hypothesis is that environmental drivers have a stronger 
effect	on	local	recruitment	variability	than	on	aggregate	recruitment,	
for	example	in	determining	the	particular	estuary	to	which	larvae	re-
cruit	 (Light	&	Able,	 2003).	While	 this	 question	may	not	 be	 relevant	
to	the	basic	management	questions	for	Atlantic	menhaden,	 local	 re-
cruitment is an important consideration for understanding interactions 
with	other,	spatially	isolated	species,	such	as	striped	bass.	This	invites	
future	work	 to	synthesize	 the	 insights	of	EDM	here	 into	ecosystem	
effects	with	the	spatial	insights	of	Buchheister	et	al.	(2016).

The results for Gulf menhaden agree with previous analysis 
showing that environmental drivers are important for understanding 
recruitment variability. Previous studies have focused on the effect 

of	Mississippi	and	Atchafalaya	river	outflow	(Govoni,	1997;	Vaughan	
et	al.,	2011)	on	 recruitment.	These	analyses,	however,	were	based	
on stock assessments including adult landings data with assumptions 
such as the natural mortality of menhaden being constant across all 
years	 (i.e.,	 independent	 of	 ecosystem	processes).	 The	CCM	analy-
sis	here	 shows	an	effect	of	SLP	on	both	 recruits	 and	year-	to-	year	
changes	in	adults,	with	marginally	significant	evidence	of	an	effect	
of	river	discharge	on	adult	LPUE	only.

More	generally,	this	case-	study	is	instructive	to	larger	questions	
about prediction and management. Several recent publications 
(Hilborn	et	al.,	2017;	Szuwalski	&	Hilborn,	2015)	have	questioned	
management approaches due to a failure to find quantitative ev-
idence for interaction between stock size and recruitment. The 
studies	 at	 the	 core	 of	 these	 debates	 (Gilbert,	 1997;	 Szuwalski	
et	al.,	 2015;	 Vert-	pre,	 Amoroso,	 Jensen,	 &	 Hilborn,	 2013),	 how-
ever,	relied	on	the	traditional	parametric	stock–recruitment	curves	
and simple linear correlations that carry a large number of embed-
ded	assumptions.	In	fact,	those	methods	would	suggest	that	stock	
has no effect on recruitment in menhaden. Rather than immedi-
ately concluding stock size does not need to be maintained for 
future	productivity,	the	analyses	here	show	that	a	clear	predictive	
effect	of	stock	on	recruitment	exists.	One	simply	must	remove	as-
sumptions about separability and independence and allow for the 
reality that ecology interplays with the reproductive dynamics of 
these populations.

F IGURE  7 Convergent	cross-	mapping	(CCM)	analysis	of	
environmental	drivers.	As	environmental	drivers	may	act	with	
time	lags,	CCM	analysis	is	done	with	a	variable	time	lag.	Here,	
cross-	map	skill	(ρ)	is	shown	as	a	function	in	the	prediction	time	
between menhaden time series and regional summaries of three 
environmental	measurements:	sea	level	pressure	(SLP),	sea	surface	
temperature	(SST)	and	river	discharge.	Generally,	SST	shows	the	
strongest	effect,	although	SLP	appears	to	be	more	important	for	
Gulf	recruitment	(JAI)
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F IGURE  8 Predicting recruitment from stock and environment 
in	Atlantic	(left)	and	Gulf	(right)	menhaden.	The	analysis	shown	
in	Fig.	6	is	repeated	with	key	environmental	drivers	included	
with	lags	of	stock,	with	forecast	skill	(ρ)	and	error	(MAE)	shown	
in	red	and	blue,	respectively.	In	the	Atlantic,	incorporating	SST	
does not improve prediction over using just lags of stock. In the 
Gulf,	incorporating	SLP	leads	to	substantial	improvement.	In	
either	case,	optimal	prediction	is	still	achieved	when	multiple	
lags	of	LPUE	are	included,	suggesting	that	there	are	additional	
ecosystem factors besides synoptic measures of climate that are 
important to menhaden recruitment. The skill and error of the 
constant	predictor	(i.e.,	predict	that	JAI(t	+	1)	=	JAI(t))	are	included	
as	dashed	lines.	MAE	direction	is	reversed	to	correspond	with	the	
direction of ρ
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These results join several other recent studies that forge inroads 
into	adapting	the	EDM	approach	to	practical	fisheries	management	
(Harford,	Karnauskas,	Walter,	&	Liu,	2017;	Liu,	Karnauskas,	Zhang,	
Linton,	&	Porch,	2017;	Ye,	Beamish,	et	al.,	2015).	However,	real	fore-
cast	skill	is	invaluable	to	proactive	management;	without	it,	manage-
ment	can	only	be	 reactive.	So,	while	 the	number	of	 success	cases	
with	EDM	grows,	studies	continue	to	 find	 trouble	with	using	clas-
sical fisheries models predictively. There is still a somewhat open 
question of the best way to translate the baseline forecasting ability 
demonstrated	in	these	papers	into	improved	management,	but	the	
demonstrated	predictability	 clearly	outlines	 a	 usefulness	 for	EDM	
approaches.	 The	 ability	 to	 predict	 the	 near-	term	 growth	 potential	
of the stock is a valuable piece for moving forward with manage-
ment,	 ecosystem-	based	 or	 not.	 The	 most	 immediate	 opportunity	
perhaps	being	to	use	EDM	forecasts	of	recruitment	to	improve	the	
next-	year	 projections	 of	 stock	 that	 are	 used	 to	 set	 harvest	 limits.	
This	 could	 be	 valuable	 not	 only	 for	 these	menhaden	 species,	 but	
other	 recruitment-	driven	 fisheries	or	 populations	with	highly	 vari-
able recruitment.
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